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lower half of the axion-dilaton plane. We isolate a class of decays whose walls of marginal
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1 Introduction

The spectrum of BPS states in a supersymmetric theory are known to jump across walls

of marginal stability when asymptotic moduli are varied [1, 2]. The jumps in the spectrum

across the line of marginal stability is given by the wall crossing formula [3, 4]. Any proposal

for the BPS spectrum should incorporate these jumps. Recent studies have led to a good

understanding of spectrum of 1/4 BPS dyons in a large class of N = 4 string theories [5–7].1

All walls of marginal stability of 1/4 BPS dyons with co-dimension one have been classified

in these theories [9, 10] It has also been shown that jumps in the spectrum of 1/4 BPS

states across these walls are consistent with the wall crossing formula [9, 11–14]

For BPS states in N = 2 theories a similar understanding has yet to emerge. In [15]

a proposal for the spectrum of class of 1/2 BPS state in the STU model was put for-

ward. The first subleading corrections in entropy for large charges evaluated from this

1See [8] for a review.
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proposal agrees with that evaluated using the Hawking-Bekenstein-Wald formula including

the Gauss-Bonnet term. For large charges the partition function proposed for the STU

model also reduces to the OSV form [16] on performing the Laplace transform with respect

to the electric charges [17]. The pre-factor which arises in this Laplace transform agrees

with that proposed by [18]. In [17], the proposed partition function for the STU model was

argued to be to be valid only for single centered black holes. Thus the spectrum obtained

from the proposed partition function is valid only when the asymptotic moduli equals the

moduli at the attractor point. It is only for these values of the asymptotic moduli the

single centered black hole is stable and multi-centered configurations do not exist. To un-

derstand how to extend the partition function to all regions in asymptotic moduli space it

is necessary to study the walls of marginal stability in this model and the domains formed

by the intersection of these walls.

To classify all the possible walls of marginal stability and study the domains formed

by them for an arbitrary N = 2 theory is in general a difficult task. This is because in

N = 2 theories all BPS decays are co-dimension one surfaces while in N = 4 theories only

decays to small black holes are co-dimension one surfaces [9, 10, 19]. In fact unless the

surface of marginal stability is a co-dimension one surface, the index which counts the BPS

state does not jump [20].

In this paper given a BPS state specified by a primitive charge vector (Q,P ) corre-

sponding to a large black hole we study various properties of walls of marginal stability in

a class of N = 2 theories. The properties we find will enable us to determine the conditions

on the charges of the decay and the moduli such that we obtain simple domains in moduli

space where states are stable under a class of decays. The class of N = 2 models we will

focus on in this paper are those theories constructed as freely acting orbifolds of N = 4

theories. The vector multiplet moduli space of such theories is known exactly and is of

the form

MV =
SU(1, 1)

U(1)
× SO(2, n)

SO(2) × SO(n)
. (1.1)

The axion-dilaton moduli τ , parametrizes the coset SU(1, 1)/U(1), while the rest of the

vector multiplets parametrizes the coset SO(2, n)/(SO(2) × SO(n)). The STU model

of [21, 22] has n = 2, while the FHSV [23] model has n = 10. Other models belonging to

this class with n = 4, 6 have been constructed and studied in [24].

There is a convenient parametrization of the coset in (1.1) which enables us write down

a simple mass formula for 1/2 BPS states in these models. From this mass formula we show

that if the walls of marginal stability is seen as sections in the τ -plane they will be either

circles or lines. Using the continuity properties of the walls of marginal stability we show

that the central charges of larges black holes do not vanish in the interior of the moduli

space. Since the walls are circles or lines in the τ plane it is sufficiently easy to study

the intersection of these and find domains bounded by these walls. To isolate this class of

decays we obtain certain properties of the walls of marginal stability which are true for all

decays of a given charge vector in these theories. Here are some of the general properties

of walls of marginal stability of a given charge vector (Q,P ) we find in this paper.

1. All walls of marginal stability are circles or lines in the τ plane.
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2. All walls of marginal stability meet at the same point in the lower half τ plane.

3. Walls of marginal stability corresponding to decays to two small black holes for any

generic moduli always exist.

4. To specify a wall uniquely, it is just necessary to provide the two points r− and r+

at which it intersects the real axis in the τ plane.

5. The necessary and sufficient conditions that walls intersect each other only on the

real axis and never in the interior of the upper half τ plane is

r+ =
p

q
, r− =

p′

q′
, with pq′ − p′q = 1,

where p, q, p′, q′ ∈ ZZ. If one of these points is at infinity, then the wall is line and it

must pass through an integer on the real axis. In fact we show if the above conditions

are not true, there is always a wall corresponding to a small black hole decay which

intersects the circle joining r− and r+ or the lines passing through the integer points.

Let us now look at the structure of domains formed by walls of marginal stability. The

structure of domains plays a role in determining or testing the BPS spectrum. If there is

domain with no walls of marginal stability, then the BPS spectrum remains the same in

that domain and does not jump. The boundaries of the domain will determine how the

BPS spectrum jumps when one crosses the walls which determine the domain. An example

of a simple domain bounded by walls of marginal stability is that found in [9] for the case

of N = 4 decays. This domain also exists for the N = 2 models under consideration. If one

restricts the attention to decays to two small black holes, the walls of marginal stability

are circles or lines in the upper half τ plane. Examples of these are drawn in figure 1. The

walls which correspond to decay to two small black holes are shown with bold lines. They

intersect each other only on the real line and at at rational points. Consider the region A

bounded by the line joining B and point −1 on the real line, the circle joining −1 and the

origin and the line passing through the origin and D. In this region there are no decays to

two small black holes. Similar domains exist in each interval [n, n + 1], n ∈ ZZ, for example

the domain above the circle joining the origin and the point 1 on the real axis and so on.

In this paper we isolate a class of decays, which include decays to large black holes whose

walls of marginal stability always lies in the region II, that is in the region bounded by

the small black hole decay corresponding to circles joining the points (n, 0) and (n + 1, 0)

on the real line.2 These lines of marginal stability are represented by the dashed lines in

figure 1. They can intersect each other or that of walls corresponding to small black decays

in the interior of the upper half plane at the most once in region II. Thus restricting our

attention to these class of decays, which include decays to large black holes we see that the

region region A continues to be a domain where there are no decays occur among this class.

As we have a convenient mass formula for the 1/2 BPS states in these class of N = 2

models, we can use it to study the entropy enigma found in [4, 25]. The enigma results

2The physical τ plane is determined by condition τ2 ≥ 0.
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Figure 1. Walls of marginal stability in the upper half τ plane. Bold lines correspond to walls

coincident with small black hole decays. Dashed line correspond to generic decays.

when a given 1/2 BPS states decays to products whose entropy is parametrically larger

than that of the initial state. By analyzing the various cases we show that such decays

are not allowed at generic regions of moduli space. By generic we mean when moduli are

not scaled parmetrically and is of order one. This conclusion is consistent with that found

in [4, 26] for specific examples, but here we demonstrate it in general for these class of

N = 2 models.

The organization of the paper is as follows: In section 2 we present the mass formula

for 1/2 BPS states in the class of N = 2 theories we will be dealing with and show that for

BPS states, the mass or the central charge does not vanish in the interior of moduli space.

We then present the conditions for the existence of walls of marginal stability and determine

their equations. In section 3. we first show that all decays of a given charge vector meet

at a common point in the lower half τ plane (τ2 < 0) . We then study small black hole

decays of a given charge vector and show that walls corresponding to these decays always

exist. We enumerate the conditions necessary for the existence of a wall corresponding to

a generic decay. We find the necessary and sufficient conditions such two walls never meet

in the interior of the upper half τ plane. We then determine the conditions which isolate a

class of decays whose walls lie in region below that bounded by small black hole decays. In

section 4 we study entropy enigma decays using the simple mass formula for these models

and show that at generic regions of moduli these models do not admit such decays. The

appendix contains some useful results from number theory necessary for our purposes.

– 4 –
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2 BPS mass formula and marginal stability

In this paper we will be dealing with a class of N = 2 theories which are obtained by

freely acting orbifolds of N = 4 theories. For these class of N = 2 theories, it is instructive

to derive the mass formula for BPS states from the N = 4 mass formula. Since these

theories are constructed from parent N = 4 models by a freely acting orbifold, the 1/4

BPS states as well as the 1/2 BPS states of the parent theory will be BPS states in the

orbifolded N = 2 model. Therefore we can obtain the BPS mass formula in these models

using the BPS mass formula of the N = 4 theory. Given a charge vector (Q,P ) the BPS

mass formula for N = 4 theories are given by [27, 28]

m(Q,P )2 =
1

τ2

(Q − τ̄P )T (M + L)(Q − τP ) (2.1)

+2
[

(QT (M + L)Q)(P T (M + L)P ) − (P T (M + L)Q)2
]1/2

.

Note that in this case Q,P is a charge vector belonging to a Narain lattice with signature

{(−1)r , (1)6}.3 In (2.1) we have we have to choose the branch such that the square root is

positive. This guarantees that the mass formula is given by the larger of the two central

charges of the N = 4 model. M refers to the asymptotic moduli of the vector multiplets

of the N = 4 theory and τ refers to the asymptotic dilaton-axion moduli. For the class of

N = 2 models under consideration in this paper the vector multiplet moduli space is of

the form

MV = MS ×MT , (2.2)

=
SU(1, 1)

U(1)
× SO(2, n)

SO(2) × SO(n)
.

Thus to apply the mass formula in (2.1) to these N = 2 models we just have to restrict

the matrix M so that it parametrizes the coset SO(2, n)/(SO(2) × SO(n) Therefore M is

a (2 + n) × (2 + n) matrix which satisfies the conditions

MT = M, MT LM = L, (2.3)

where L is the diagonal(2 + n) × (2 + n) matrix given by

L = Dia(−1n, 12).

The charge vectors for the N = 2 models take values in a Narain lattice with the same

signature as L. We now proceed to give an explicit parametrization of M as in [15]. First

introduce n + 2 complex numbers wI satisfying the constraint

−
n
∑

I=1

w2
I + w2

n+1 + w2
n+2 = 0, (2.4)

together with the identification wI ∼ cwI , where c is a complex number. Note that the

constraint in (2.4) and the identifications of w’s up to complex scalings reduce the number

3For Heterotic on T 6, r = 22
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of independent parameters to 2n which is the required number of variables to parametrize

the moduli space MT . Using the scaling degree of freedom, the constraints in (2.4) can be

solved by introducing n complex numbers (y+, y−, ~y) where ~y is a n dimensional vector.

These variables are related to the wI ’s by

wI = yI , I = 1, · · · n − 2, wn−1 =
1√
2
(y+ − y−), (2.5)

wn = 1 +
y2

4
, wn+1 =

1√
2
(y+ + y−),

wn+2 = −1 +
y2

4
, y2 = 2y+y− + ~y2.

It is easy to see that these values of wI satisfy the constraint in (2.4). The above

parametrization amounts to scaling wn − wn+2 such that its value is fixed to be 2. Using

the above solution of the constraint (2.4) it can be seen that

−
n
∑

I=1

|wI |2 + |wn+1|2 + |wn+2|2 = 2Y, (2.6)

where Y = (Imy)2 = 2y+
2 y−2 − ~y2

2.

Here the subscripts 2 in y refer to its imaginary part. Y is related to the Kähler potential

on the moduli space by

K = − log Y. (2.7)

We can now parametrize the matrix M in (2.3) as follows

M = LM̃L − L, M̃IJ =
wIw̄J + w̄IwJ

Y
. (2.8)

Using the above parametrization of M one can easily demonstrate its properties (2.3)

using (2.4) and (2.6).

We use the above parametrization of the asymptotic moduli matrix M in terms of w’s

in the mass formula (2.1). It is first instructive to see what the terms in the square root

in (2.1) reduces to

2
[

(QT (M + L)Q)(P T (M + L)P ) − (P T (M + L)Q)2
]1/2

(2.9)

= 2

[

4|Q · w|2|P · w|2
Y 2

− {(Q · w)(P · w̄) + (Q · w̄)(P · w)}2

Y 2

]1/2

,

=
2

Y

[

(−) {(Q · w)(P · w̄) − (Q · w̄)(P · w)}2
]1/2

,

= ±2i

Y
[(Q · w)(P · w̄) − (Q · w̄)(P · w)] ,

= ∓ 4

Y
Im((Q · w)(P · w̄)).

Since we have to choose the positive square root we see that for Im((Q ·w)(P · w̄)) < 0 we

have to choose the − ve sign in the last line of (2.9) and for Im((Q ·w)(P · w̄)) > 0 we have

– 6 –
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to choose the + ve sign in the last line of (2.9). We summarize this in the equation below

[

(QT (M + L)Q)(P T (M + L)P ) − (P T (M + L)Q)2
]1/2

(2.10)

=
4

Y
|Im((Q · w)(P · w̄))| .

Let us now proceed and derive the BPS mass formula The first term in the mass for-

mula (2.1) can be written as

1

τ2

(Q − τ̄P )T (M + L)(Q − τP ) (2.11)

=
1

τ2Y
[((Q − τ̄P ) · w)((Q − τP ) · w̄) + ((Q − τ̄P ) · w̄)((Q − τP ) · w)] .

Now adding (2.9) and (2.11) we obtain

m(Q,P )2 =
2

τ2Y
|(Q − τP ) · w|2, for Im((Q · w)(P · w̄)) < 0, (2.12)

m(Q,P )2 =
2

τ2Y
|(Q − τ̄P ) · w|2, for Im((Q · w)(P · w̄)) > 0. (2.13)

The first equality arises on choice of the − sign in (2.9), while the second equality arises

on the choice of + sign in (2.9). For convenience let us define

Z(Q,P ) = (Q − τP ) · w. (2.14)

With this definition the BPS mass formula for the first case in (2.12) can be written as

m2(Q,P ) = |Z̃(Q,P )|2 =
2

τ2Y
|Z(Q,P )|2. (2.15)

The above mass formula agrees with that found in [29] for N = 2 models with the vector

multiplet moduli of the form given in (2.2)4

In a given N = 2 theory the mass of BPS states are given once and for all by one formula

which is proportional to the absolute value of the central charge. Therefore we must choose

one branch out of the two possible branches given in (2.12), (2.13). In this paper we will

work with the first branch in (2.12), this implies that the condition Im((Q ·w)(P · w̄)) < 0

must be true through out the moduli space for a given charge vector (Q,P ). In section 2.2

we will demonstrate that once we choose to describe BPS states with the branch (2.12),

then the condition Im((Q · w)(P · w̄)) < 0 remains true for BPS states for all asymptotic

moduli w.

2.1 Marginal stability

In this section we state the conditions for marginal stability of a given BPS state and

show that the co-dimension one surfaces seen as sections for fixed w moduli in the τ -plane

4See equation 5.28 of [29].

– 7 –



J
H
E
P
0
8
(
2
0
0
9
)
0
5
4

are either circles or lines. Consider the marginal decay of a BPS primitive charge vector

corresponding to a large black hole with Q2 > 0, P 2 > 0 and Q2P 2 − (Q ·P )2 > 05given by

(

Q

P

)

=

(

Q1

P1

)

+

(

Q2

P2

)

. (2.16)

If the above decay is marginally allowed then the sum of the mass of the products equals

the mass of the initial state, therefore we have the equation

m(Q,P ) = m(Q1, P1) + m(Q2, P2) (2.17)

Examining the mass formula in (2.15), we see that this implies the complex numbers

Z(Q,P ), Z(Q1, P1), Z(Q2, P2),

are all co-linear. This leads to the following two conditions

Im(Z1Z̄2) = 0, (2.18)

Re(Z1Z̄2) > 0, (2.19)

where

Z1 = (Q1 − τP1) · w, Z2 = (Q2 − τP2) · w, Z = (Q − τP ) · w. (2.20)

These two conditions are equivalent to the conditions that phases of the central charges

align. The first equality imposes the condition that the phases are equal up to a multiple

of π, this implies that imposing the first equality ensures that the phases can be aligned

or off by π. While the second inequality assures that the phases align. Note that the first

condition (2.18) can also be written equivalently as

Im(ZZ̄1) = 0, or Im(ZZ̄2) = 0. (2.21)

Let us now proceed to obtain the explicit equations in the τ plane for a given fixed w

moduli. Substituting the definitions of Z in the (2.18) we obtain the following equation

τ τ̄ Im[P1 · wP2 · w̄] − τ1Im[P1 · wQ2 · w̄ + Q1 · wP2 · w̄] (2.22)

−τ2Re[P1 · wQ2 · w̄ − Q1 · wP2 · w̄] + Im[Q1 · wQ2 · w̄] = 0

In general the above equation (2.22), is an equation of a circle in the τ -plane by completing

the squares. To show this let us define

A = Im[P1 · wP2 · w̄], B = Im[P1 · wQ2 · w̄ + Q1 · wP2 · w̄],

C = Re[P1 · wQ2 · w̄ − Q1 · wP2 · w̄], D = Im[Q1 · wQ2 · w̄]. (2.23)

5In this paper we will be dealing only with primitive charge vectors, that is (Q, P ) which cannot be

written as an integral multiple of another vector.
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Note that in these coefficients are unchanged when one replace Q1 → Q,P1 → P or

Q2 → Q,P2 → P due to the property that the curve Im(ZZ̄1) can be written as (2.21).

Completing the squares in (2.22) one obtains

(

τ1 −
B

2A

)2

+

(

τ2 −
C

2A

)2

=
B2 + C2 − 4AD

4A2
. (2.24)

It can be shown using simple algebraic manipulations that

B2 + C2 − 4AD = |P1 · wQ2 · w − P2 · wQ1 · w|2. (2.25)

Thus for A 6= 0 the equation (2.22) is that of a circle, if A = 0 it reduces to that of

the straight line.6 Let us now examine the second condition for marginal stability given

in (2.19). Again substituting the definition of Z into this condition we obtain the equation

τ τ̄Re[P1 · wP2 · w̄] − τ1Re[P1 · wQ2 · w̄ + Q1 · wP2 · w̄] (2.26)

+τ2Im[P1 · wQ2 · w̄ − Q1 · wP2 · w̄] + Re[Q1 · wQ2 · w̄] > 0.

The curve determining the above inequality is also an equation of a circle, this can be seen

by completing the squares.7 Let us define the following

A′ = Re[P1 · wP2 · w̄], B′ = Re[P1 · wQ2 · w̄ + Q1 · wP2 · w̄],

C ′ = Im[P1 · wQ2 · w̄ − Q1 · wP2 · w̄], D′ = Re[Q1 · wQ2 · w̄]. (2.27)

In terms of these variables, the inequality reduces to

A′

[(

τ1 −
B′

2A′

2
)

+

(

τ2 +
C ′

2A′

)2
]

− |P1 · wQ2 · w − P2 · wQ1 · w|2
4A′

> 0. (2.28)

Here we have used the equality

(B′)2 + (C ′)2 − 4A′D′ = |P1 · wQ2 · w − P2 · wQ1 · w|2. (2.29)

Therefore the wall of marginal stability is given by the part of the circle in (2.22) which

satisfies the inequality in (2.26) and which lies in the physical part of the τ plane. We call

such a wall of marginal stability as a the wall corresponding to a physical decay. Let us

determine the point of intersection of the circle which determines the inequality in (2.26)

and the circle in (2.22). From (2.18) and (2.19), we see that they intersect at the two points

Z1 = 0, or Z2 = 0. (2.30)

We will show in section 2.2 that these points of intersection never lie in the interior of the

physical moduli space, that is in the interior of the upper half τ plane (τ2 > 0).

6It can be shown that if one examines the equation Im(Z1Z̄2) for constant τ, y−, ~y moduli in the y+

plane, the resultant curve is also a circle. Similarly the curve is also a circle in the y− plane for constant

τ, y+, ~y.
7The inequality Re(Z1Z̄2) > 0 in the y+ plane for constant τ, y−, ~y moduli is also determined by a circle.

The same statement can be made when the inequality is seen in the y− plane for constant τ, y+, ~y.
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Let us now compare the conditions for walls of marginal stability with that for the

existence of the two centered black hole solution with charges (Q1, P1), (Q2, P2). The

integrability condition [3] for the existence of the two centred solution results in the fol-

lowing equation

R =
(Q1 · P2 − Q2 · P1)|Z̃(Q,P )|

Im(Z1Z̄2)
. (2.31)

where R is the distance between the two centers. Therefore we see that generically, when

(Q1 ·P2 −Q2 ·P1) 6= 0 the two centred solutions are stable and exist at one side of the line

Im(Z1Z̄2) = 0 and are unstable on the other side. At the wall Im(Z1Z̄2) = 0 the distance

between the two centers of the black holes goes to infinity.

2.2 Non-vanishing of central charges and ImQ · wP · w̄ < 0

It has been argued in [1, 30, 31] that the central charge of a BPS state corresponding to

a large black hole never vanishes in the interior of the physical moduli space. In fact, it

has been shown that the minimum value of the modulus of the central charge of a given

BPS state occurs at the attractor value of the moduli which is proportional to the classical

entropy of the corresponding black hole [31]. The fact that the central charge of a BPS

state never vanishes at the interior of the physical moduli space was used recently in [32]

in studying decay of D0-D6 bound states. For small black holes the central charge does

vanish, but as we will see later, this occurs at rational and real values of the axion dilaton

moduli not in the interior of the moduli space. If the central charged does vanish in the

interior of the moduli space, then the corresponding state is not BPS.

In this section we provide an alternate argument that the central charges do not vanish

in the interior of the moduli space based on the continuity properties of the walls of marginal

stability. This will also enable use to derive the fact that the sign of Im(Q · wP · w̄) is

maintained through out the moduli space. Let us suppose the central charge say Z1 =

Z(Q1, P1) vanishes in the interior of the moduli space. Consider any decay in which Z1 is

one of the decay products, we then have

Z(Q,P ) = Z(Q1, P1) + Z(Q2, P2). (2.32)

The wall of marginal stability in the upper half τ plane is determined by the circle (2.18)

and the inequality (2.19). As discussed earlier, the two circles intersect at (2.30), that is

either at Z1 = 0 or Z2 = 0. Now that since the point Z1 = 0 lies in the interior of the moduli

space, we will have a situation which is schematically shown in figure 2. In this figure the

circle with the bold line corresponds to the equation Im(Z1Z̄2) = 0, while the circle with

the the dashed lines correspond to the equation Re(Z1Z̄2) = 0. They intersect at point

A. For definiteness let the exterior of the circle with dashed lines be the domain in which

Re(Z1Z̄2) > 0. Then the arc ABC is the segment along which both the equation (2.18) and

the inequality (2.19) are satisfied. Along the arc DA the equation (2.18) is satisfied while

the inequality is not. Therefore along the arc ABC the charges Z1 and Z2 are aligned,

while along the arc DA, the charges are anti-aligned. Now the equation for the stability of

the two centered black hole is given by (2.31). From this we see that two centered black
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hole solution will be stable at one side of the circle with bold lines. Let us assume that

for definiteness it is stable in the interior of the circle with bold lines, that is (2.18). This

results in the following contradition: Consider a two centered black hole solution along the

arc DA, just in the interior on the bold circle. The distance between the centres of the

black holes from (2.31) is infinite. Therefore they do not interact with each other. Since

they don’t interact the total mass of the system is just sum of the masses of the two black

holes.8 Therefore the mass of the corresponding single centred black hole from which the

two centred black hole has decayed is given by

|Z(Q,P )| = |Z(Q1, P1)| + |Z(Q2, P2)|. (2.33)

But from the fact along the arc DA we have the condition Re(Z1Z̄2) < 0, the central

charges are anti-aligned along DA. Thefore we have the equation

|Z(Q,P )| = ||Z(Q1, P1)| − |Z(Q2, P2)||. (2.34)

From equations (2.33) and (2.34) we have obtained a contradition. Thus we see that the

central charges cannot vanish in the interior of moduli space. A similar contradiction can

be obtained if the two centered black hole is stable in the exterior of the circle with bold

lines and also if Re(Z1Z̄2) > 0 is satisfied in the interior of the circle with dashed lines.

As mentioned earlier, there are cases in which the central charge can vanish at the

boundaries of moduli space. These occur for small black holes. Consider the case in which

the electric and the magnetic charges are proportional (Q,P ) = (mM,nM), Then the

central charge vanishes at τ = m
n with M ·w 6= 0. This point is at the boundary of moduli

space, one can map it to infinity by a SL(2, ZZ) transformation. It is easy to see that the

above argument does not apply to such states, since the point A is on the real line for

these states not in the interior of the moduli space. In fact these states are dual to purely

electric states with electric charge M . The condition M ·w 6= 0 restricts the argument from

being applied to gauge bosons which can become massless at special points in moduli space.

Gauge bosons satisfy the condtion Q2 = −1, P = 0, which are excluded from our analysis.

Sign of Im(Q · wP · w̄). Now that we know the central charge of any BPS state does

not vanish in the interior of the moduli space we can show that the the condition

Im[(Q · w)(P · w̄)] < 0

holds through in the interior of the moduli space. Let us suppose that there are regions in

the moduli space where the above condition is violated. Let w̃ be in such a region, then

Im(Q · w̃)(P · ¯̃w) > 0 (2.35)

Let us examine the central charge at the point

τ̃2 =
Im(Q · w̃)(P · ¯̃w)

|P · w̃|2 , τ̃1 =
Re(Q · w̃)(P · ¯̃w)

|P · w̃|2 . (2.36)

8The author thanks Ashoke Sen for pointing this important fact.
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τ∗

A

B

C

Re(Z1Z̄2) > 0

Re(Z1Z̄2) < 0

τ2

τ1

D

Figure 2. Contradition obtained if the central charge Z1 vanishes in the interior of the moduli

space: The inequalities indicate the central charges Z1 and Z2 are anti-aligned along DA. But

since the two black holes are at infinite distance along DA the masses just add, therefore the

central charges must be aligned.

This point certainly lies in the interior of the moduli space due to (2.35). At this point the

central charge

Z(Q,P ; τ̃) = (Q · w̃ − τ̃P · w̃) = 0. (2.37)

We have arrived at a contradition. Therefore there are no regions in the interior of moduli

space for which the condition Im[(Q·w)(P ·w̄)] < 0 is violated. Thus once the branch (2.12)

for the BPS mass formula is chosen, it does not change over the entire moduli space.

3 Properties of walls of marginal stability

To get an idea of the geometric structure of the domains bounded by the various lines of

marginal stability we need to study the possible intersection points of these walls. We first

consider two possible decays of a given charge vector (Q,P ) corresponding to a BPS state.9

We denote the decays by the following equations

Z(Q,P ) = Z(Q1, P1) + Z(Q2, P2), Z(Q,P ) = Z(Q′
1, P

′
1) + Z(Q′

2, P
′
2). (3.1)

9(Q,P ) belong to the Narain lattice of the respective N = 2 model. We also choose to work in some

duality frame in which P 6= 0
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For ease of notation we define

Z1 = Z(Q1, P1), Z2 = Z(Q2, P2), Z ′
1 = Z(Q′

1, P
′
1), Z ′

2 = Z(Q′
2, P

′
2). (3.2)

The equations that determine the two walls of marginal stability are given by

Im(Z1Z̄) = 0, Re(Z1Z̄) > 0, (3.3)

Im(Z ′
1Z̄) = 0, Re(Z ′

1Z̄) > 0.

Here we have used the equivalent form given in (2.21) to write the equations for the walls

of marginal stability. From our earlier discussion, the walls of marginal stability of each of

the two decays are determined by the equality together with the restriction obtained from

the corresponding inequality. We will examine these walls as sections in the τ plane for a

given moduli w. Therefore the physically relevant part of the wall is that part which lies

in the domain τ2 ≥ 0.

We organize this section as follows: In section 3.1 we show that all walls of marginal

decay of a given charge vector (Q,P ) meet at a point in the lower half τ plane ( τ2 < 0).

We then discuss the structure of the walls due to the decay of a given charge vector to

two small black holes. In section 3.3 we show that a wall can be characterized by two real

numbers r+ and r− at which the circle intersects the real axis in the τ plane. In section 3.4

we study walls formed by a generic black hole decay and state the conditions on the moduli

and the charges which ensure a given decay physical. In section 3.5 we use the fact that all

walls meet at a point in the lower half of the τ plane to to determine the intersection point

of a wall corresponding to a decay to small black holes and any generic decay. In section

3.6 we show that the only walls which don’t intersect each other in the interior of the τ

plane are the ones corresponding to the small black hole decay or the ones whose walls

coincide with the walls of small black hole decays. In section 3.7 we isolate the conditions

on the moduli and the charges of a generic decay so that the corresponding wall always

lies in a region bounded by the walls corresponding to small black hole decays.

3.1 All walls meet at the same point in the lower half τ plane

We know that the equations Im(Z1Z̄) = 0 and Im(Z ′
1Z̄) = 0 are generically circles. There-

fore they intersect each other at the most twice. We now observe that a point common to

these circles is the point τ∗ where Z vanishes. This point is given by

τ∗
1 =

Re(Q · wP · w̄)

|P · w|2 , τ∗
2 =

Im(Q · wP · w̄)

|P · w|2 . (3.4)

Since Im(Q · wP · w̄) < 0 for all w, this point lies in the lower half τ plane. Thus we

conclude that all walls corresponding to decays of a given charge vector (Q,P ) meet at the

point (3.4) in the lower half τ plane. Though this point is not physically relevant we will

see that it provides us useful information about the geometric structure of the domains

formed by the walls. In fact from the knowledge of this point it is easy to determine the

possible second intersection point of the walls for a generic pair of decays. It is possible for

the second point to be in a valid region of the moduli space and also satisfy the inequality
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in (3.3). As we will see this second point determines the structure of the domains formed

by the various walls.

Let us now restrict our attention to the situation in which one of the decays is to

two small black holes in (3.3) and the other decay is more generic, including decays to

large black holes. We start with examining the wall corresponding to the decay to small

black holes.

3.2 Walls for decay into two small black holes

By small black holes we mean those BPS states in these N = 2 theories whose electric and

magnetic charges are proportional. The charge vector (Q,P ) is given by (mM,nM) where

M is a given vector in the Lorentzian lattice and m,n are integers.10 We first study the

lines of marginal stability for decay to two small black holes. We can then parametrize the

decay as in [9]
(

Q

P

)

=

(

adQ − abP

cdQ − cbP

)

+

(

−bcQ + abP

−cdQ + adP

)

, (3.5)

where ad − bc = 1 and {a, b, c, d} ∈ ZZ. For simplicity we have assumed that the S-duality

symmetry of the theory is SL(2, ZZ). In the freely acting orbifold construction of these

theories given in [21–24] the S-duality group is usually a subgroup of SL(2, ZZ). In that

case quantization of the charges leads to the condition: {a, b, d} ∈ ZZ while c ∈ N ZZ for the

S-duality group Γ1(N) [9]. One can easily generalize the conclusions found in this paper

for these cases. As shown in [9], the above parametrization is a unique parametrization of

the decay into two small black holes up to the following transformations

(

a b

c d

)

→
(

a b

c d

)(

λ 0

0 λ−1

)

,

(

a b

c d

)

→
(

a b

c d

)(

0 1

−1 0

)

. (3.6)

Substituting the parametrization given in (3.5) into the conditions for marginal stabil-

ity (2.18) and (2.19), we obtain the following equation and inequality.

Im(Q · wP · w̄)
(

cd|τ |2 − (bc + ad)τ1 + ab
)

−(cd|Q · w|2 + ab|P · w|2 − (ad + bc)Re(Q · wP · w̄))τ2 = 0,
(

−cd|Q · w|2 − ab|P · w|2 + (bc + ad)Re(Q · wP · w̄)
) (

cd|τ |2 − (ad + bc)τ1 + ab
)

−Im(Q · wP · w̄)τ2 > 0. (3.7)

It is convenient to perform a duality transformation to convert the conditions of marginal

stability to straight lines. We consider the following S-duality transformations

τ =
aτ ′ + b

cτ ′ + d
,

(

Q

P

)

=

(

aQ̃ + bP̃

cQ̃ + dP̃

)

(3.8)

10There can be other classes of small black holes, for instance in the STU model, one can look at states

whose electric and magnetic charges are proportional in the T frame rather than the usual S frame. Our

discussion will apply to these decays if one examines the wall in the y+ plane for a given τ, y− moduli.
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Then in terms of these new variables the equations reduce to

− Im(Q̃ · wP̃ · w̄)τ ′
1 + Re(Q̃ · wP̃ · w̄)τ ′

2 = 0 (3.9)

−Re(Q̃ · wP̃ · w̄)τ ′
1 − Im(Q̃ · wP̃ · w̄)τ ′

2 > 0.

Now substituting for τ ′
1 from the first equation into the second inequality one obtains

− |Q̃ · wP̃ · w|2
Im(Q̃ · wP̃ · w̄)

τ ′
2 > 0. (3.10)

Since we have to examine the wall only in the physical τ plane, we have τ ′
2 ≥ 0. This

implies that the phases align on the line of marginal stability only if Im(Q̃ · wP̃ · w̄) < 0.

It is easily seen that this condition is indeed true, since

Im[Q̃ · wP̃ · w̄] = Im[(dQ − bP ) · w(−cQ + aP ) · w̄], (3.11)

= Im(Q · wP · w̄) < 0.

Where we have substituted for (Q̃, P̃ ) in terms of (Q,P ) from (3.8) and used the condition

ad − bc = 1. As we have shown that the the condition Im(Q · wP · w̄) < 0 is maintained

throughout the interior of the moduli space, the inequality (3.10) is always satisfied in the

upper half τ plane. This implies that the part of the line given in (3.9) in the upper half

plane is the wall of marginal stability for the decay of the charge vector (Q,P ) to small

black hole given by equation (3.5) Therefore given the charge vector (Q,P ) and the moduli

w there always exists a wall of marginal stability for the charge vector to decay into small

black holes.

The analysis of the structure of the domains formed by these walls was done in [9]

for N = 4 theories. The same analysis goes through for these class of N = 2 models. A

schematic diagram of the domains is given in figure 1. The small black hole decays consists

of the bold curves. There are lines passing through the integer points on the real axis and

there are circles joining each of these points. Then there are other circles which always

lie below the circles joining the integer points. None of the circles corresponding to small

black hole decay intersect each other in the interior of the upper half plane. The circles

can intersect in the physical part of the τ plane only on the real axis. From (3.7) we see

that the wall of marginal stability intersects the real axis in the τ plane at

r+ =
a

c
, and, r− =

b

d
, with ad − bc = 1, (3.12)

and it is only these points that can be possible meeting points of the walls corresponding

to two different small black hole decays.

3.3 Characterization of a generic decay

We have seen in the previous section that small black holes decays are characterized by

the integers a, b, c, d with ad − bc = 1. In this section we introduce a simple method of

characterization of the wall for a general decay.. This characterization enables one to easily
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determine if two walls intersect each other in the interior of the upper half plane. As we

will see, this enables one to easily classify walls. Consider a generic decay given by

(

Q

P

)

=

(

Q′
1

P ′
1

)

+

(

Q′
2

P ′
2

)

(3.13)

From (2.18) and (2.19) it is easy to see that the wall of marginal stability of this decay is

determined by the following

τ τ̄ Im[P ′
1 · wP · w̄] − τ1Im[(P ′

1 · wQ · w̄) + (Q′
1 · wP · w̄)] (3.14)

−τ2Re[(P ′
1 · wQ · w̄) − (Q′

1 · wP · w̄)] + Im[Q′
1 · wQ · w̄] = 0

τ τ̄Re[P ′
1 · wP ′

2 · w̄] − τ1Re[(P ′
1 · wQ′

2 · w̄) + (Q′
1 · wP ′

2 · w̄)] (3.15)

+τ2Im[(P ′
1 · wQ′

2 · w̄) − (Q′
1 · wP ′

2 · w̄)] + Re[Q′
1 · wQ′

2 · w̄] > 0

We now wish to state the conditions under which the above wall of marginal stability is

physical. That is, the conditions that ensure that the part of the circle in (3.14) lies in the

upper half τ -plane and this part of the circle satisfies the inequality in (3.15). For ease of

notation let us again define the coefficients

A = Im[P ′
1 · wP · w̄], A′ = Re[P ′

1 · wP ′
2 · w̄], (3.16)

B = Im[P ′
1 · wQ · w̄ + Q′

1 · wP · w̄], B′ = Re[P ′
1 · wQ′

2 · w̄ + Q′
1 · wP ′

2 · w̄],

C = Re[P ′
1 · wQ · w̄ − Q′

1 · wP · w̄], C ′ = −Im[P ′
1 · wQ′

2 · w̄ − Q′
1 · wP ′

2 · w̄],

D = Im[Q′
1 · wQ · w̄], D′ = Re[Q′

1 · wQ′
2 · w̄].

We already know that the circle (3.14) passes through the point τ∗ given in (3.4) which

lies in the lower half τ plane. Therefore, the necessary condition one needs to impose so

that part of the circle in (3.14) lies in the upper half plane is that it should intersect the

real axis. This is given by the following

B2 − 4AD > 0, or (3.17)

(Im[P ′
1 · wQ · w̄ + Q′

1 · wP · w̄])2 − 4Im[P ′
1 · wP · w̄]Im[Q′

1 · wQ · w̄] > 0.

We also must make sure that if (3.14) is to be a physical line of marginal stability,

the points on the curve in (3.14) must also satisfy the inequality (3.15). We will discuss

the various conditions which ensure this in the next section. We now introduce a method

to characterize the circles in (3.14) provided it satisfies the condition (3.17). Instead of

choosing A,B,C,D to specify this circle we characterize the circle as follows: We already

know that this circle passes through the common point (3.4). This point is completely

specified by the initial charge vector (Q,P ) and the moduli w. We need two more points

to characterize this circle. Due to the condition (3.17), it is clear that it intersects the real

axis. The points of intersection are given by

r± =
B ±

√
B2 − 4AD

A
. (3.18)
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Without loss of generality we will assume r− < r+, the case when r− = r+ just results

in the circle being tangent to the real line from below. Since the point (3.4) is common

to all possible decays, specifying the two points of intersection on the real axis r+ and

r−4 completely determines the circle. Note that when A → 0, r+ → ∞, then the circle

reduces to a line and r− then refers to the point of intersection of the line with the real

axis. Though one has uniquely specified the circle using these numbers, the decay which

corresponds to a circle specified by r− and r+ is not unique. A decay with the parameters

λA, λB, λC, λD, will also have the same values of r+ and r− and pass through (3.4). The

advantage of this characterization of the circle is that given a pair of circles (r−, r+) and

(r′−, r′+) they intersect in the interior of the upper half plane if and only if either of the

following conditions are satisfied

r− < r′− < r+ < r′+, or r′− < r− < r′+ < r+. (3.19)

3.4 Existence conditions for walls of generic decays

In this section we will find the conditions necessary so that the part of the circle (3.14)

which emerges in the upper half plane also satisfies the inequality (3.15). Let us examine

the situation when A = Im(P ′
1 · wP · w̄) 6= 0. Then we can use the equation in (3.14) to

write the inequality in (3.15) as

A′B − AB′

A
τ1 +

(A′C − AC ′)

A
τ2 +

(AD′ − A′D)

A
> 0. (3.20)

We also know from the discussion above (2.30) that the line which determines the inequal-

ity in (3.20) intersects the circle (3.14) only in the lower half τ plane. This is because the

intersection of the line in (3.20) and the circle (3.14) occurs at points where the central

charges Z ′
1 or Z ′

2 vanishes and these are only in the lower half τ plane. Therefore, there

are no other points at which the line (3.20) intersects the circle (3.14). This implies that

to ensure that the part of the circle which emerges in the upper half plane satisfies the

inequality it is sufficient to demand that any point on the circle (3.14) satisfies the inequal-

ity (3.20). We know that τ = (r+, 0) and τ = (r−, 0) are points on the circle (3.14). Thus

the average of these points also must satisfy the inequality (3.20). This gives the condition

(r+ + r−)
A′B − AB′

A
+ 2

AD′ − A′D

A
> 0, (3.21)

B(A′B − AB′) + 2(AD′ − A′D)A > 0,

where we have used r+ + r− = B/A. Note that this true only if A′B−AB′ 6= 0. Rewriting

the above condition in terms of the values of the coefficients and after some simplifications

we obtain
[

|P ′
1 · w|2Im(P ′

2 · wQ′
2 · w̄) + |P2 · w|2Im(P ′

1 · wQ′
2 · w̄)

]

(3.22)

×Re(P ′
1 · wQ2 · w̄ + Q′

1 · wP ′
2 · w̄) − 2(P ′

1 · wP ′
2 · w̄)Im(P ′

1w̄P2 · wQ′
1 · wQ2 · w̄) > 0.

For completeness let us discuss the case in which A′B−AB′ = 0, evaluating this explicitly

we obtain

A′B − AB′ = |P ′
1 · w|2Im(P ′

2 · wQ′
2 · w̄) + |P2 · w|2Im(P ′

1 · wQ′
2 · w̄), (3.23)
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Since both the terms are of the same sign, this can vanish only if Im(P ′
2wQ2w̄) =

Im(P ′
1w̄Q′

1w̄) = 0. This occurs when both the decay products are small black holes.

Now

AD′ − A′D = −Im(P ′
1w̄P2 · wQ′

1 · wQ2 · w̄)

which also vanishes for small black hole decays. Thus the condition (3.21) for small black

hole decay reduces to
A′C − AC ′

A
> 0 if A 6= 0.. (3.24)

We can verify this condition for the existence of a physical wall of marginal for small black

hole decay. Evaluating the condition (3.17) for this case by substituting the values of the

charges of the decay products from (3.7) and evaluating the coefficients from either (3.16)

or (3.7) we obtain

B2 − 4AD = [Im(Q · wP · w̄)]2(bc − ad)2 > 0, (3.25)

which is always satisfied. Furthermore we see that Im(P ′
1 ·wP · w̄) = cdIm(Q ·wP · w̄) 6= 0

if cd 6= 0. Now examining the condition in (3.22) we see

−
{

−cd|Q · w|2 − ab|P · w|2 + (bc + ad)Re(Q · wP · w̄)
}2

+ [Im(Q · wP · w̄)]2

Im(Q · wP · w̄)
> 0. (3.26)

It is now clear that the wall is physical when Im(Q · wP · w̄) < 0 which as we have seen is

always true. Thus the decay to two small black holes is always allowed, which is the same

conclusion reached earlier.

Let us now consider the case of A = Im(P ′
1 · wP · w̄) = 0. Note that this condition in

general imposes an additional condition on the w moduli. But then the wall of marginal

stability we will obtain is a higher co-dimension surface. Therefore we must look for

situations when A vanishes at generic w moduli. This occurs if P ′
1 = 0 or if P ′

1 = αP and

α 6= 1.11 Let us first examine the situation when P ′
1 = αP . Now in this case, the circle

in (3.14) reduces to a line.

− Bτ1 − Cτ2 + D = 0, (3.27)

while the coefficient A′ reduces to α(1 − α)|P ·w|2. We know the intersection of the circle

which determines the inequality in (3.15) and the line in (3.27) lies in the lower half plane.

If the points on the line in (3.27) satisfies the inequality (3.15), then it must be true that

the inequality must hold when τ2 → ∞. Thus if the coefficient A′ > 0 the inequality (3.15)

is satisfied and the resulting decay is physical. But since A′ = α(1 − α)|P · w|2 we must

have 0 < α < 1 for A′ > 0. Now let us examine the situation when P1 = 0. For this case

we see that the coefficient A′ also vanishes. Thus both the circle in (3.14) and the circle

determining the inequality (3.15) reduces to following lines.

− Bτ1 − Cτ2 + D = 0, −B′τ1 − C ′τ2 + D′ > 0. (3.28)

11 P 6= 0 by assumption, P ′
1 = P is the same physical situation as P ′

1 = 0, because in this case P ′
2 = 0
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Case (i) A 6= 0, A′B − AB′ 6= 0 and

(A′B − AB′)B + 2(AD′ − A′D)A > 0 See (3.22)

Case (ii) A = 0, P ′
1 = 0, B, 6= 0 and B′C−BC′

B > 0 See (3.31)

A = 0, P ′
1 = αP and 0 < α < 1 , ⇒ A′ > 0, Decay allowed

Case (iii) Small black hole decay A′B − AB′ = 0 Always allowed

Table 1. Conditions for the existence for a wall of marginal stability

Let us suppose B = Im(Q′
1 · wP · w̄) 6= 0. The lines intersect at a point in the lower half

plane. This is the point at which one of the central charges vanish. Eliminating τ1 from

the first equation one gets the condition

B′C − BC ′

B
τ2 −

B′D + BD′

B
> 0. (3.29)

The imaginary part of τ at which the lines meet is given by

τ∗
2 =

B′D − BD′

B′C − BC ′
=

Im(Q′
2 · wP · w̄)

|P · w|2 < 0. (3.30)

Note that this is the point at which the central charge Z ′
2 vanishes and it lies in the lower

half of the τ plane. Therefore we obtain the condition that the wall of marginal stability

is physical if and only if the coefficient of τ2 in (3.29) is positive

B′C − BC ′

B
=

|Q′
1 · w|2Im(P · wQ′

2 · w̄)

Im(Q′
1 · wP · w̄)

> 0. (3.31)

Finally we look at the case P ′
1 = 0 which implies A = 0 and B = Im(Q′

1 ·wP · w̄) = 0. For

generic values of w moduli, this can occur only when Q′
1 = αP for α 6= 0 since for α = 0,

there is no decay. Then the equation of the circle (3.14) reduces to

α|P · w|2τ2 − αIm(Q · wP · w̄) = 0. (3.32)

Since Im(Q ·wP · w̄) < 0, this equation has no solution in the physical upper half τ plane.

We have summarized all the conditions necessary for the occurrence of a physical wall

of marginal stability in table 1. For all the cases the condition in (3.17) is neccessary. In

what follows we will assume that the moduli w for the general decay always satisfies these

conditions. In what follows we will assume that the moduli w for this general decay always

satisfies these conditions.

3.5 Intersection of walls of small black hole decays and a generic decay

Since a generic decay is a circle seen in the τ plane, the walls of two decays intersect at

the most twice. We have seen that all walls meet at a common point in the lower half

plane. Using this fact it is easy to find the other possible point of intersection. In this

section we will find this second point of intersection, for a wall corresponding to a small

black hole decay and a generic decay. The generic decay can include decays to large black
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holes. Let us denote the second decay by that given in (3.13). To find the intersection

point of the circle (3.14) and that corresponding to the small black hole decay in (3.7). It

is convenient to parametrize the upper half τ plane using the coordinate τ ′ given in (3.8).

In this coordinate, the equation (3.14) becomes

|τ ′|2
{

a2Im(P1 · wP · w̄) − acIm(P1 · wQ · w̄ + Q1 · wP · w̄) + c2Im(Q1 · wQ · w̄)
}

τ ′
1 {2abIm(P1 · wP · w̄) − (ad + bc)Im(P1 · wQ · w̄ + Q1 · wP · w̄) (3.33)

+2cdIm(Q1 · wQ · w̄)} − τ ′
2Re(P1 · wQ · w̄ − Q1 · wP · w̄)

+
{

b2Im(P1 · wP · w̄) − bdIm(P1 · wQ · w̄ + Q1 · wP · w̄) + d2Im(Q1 · wQ · w̄)
}

= 0.

While the small black hole decay reduces to the line given in (3.9). From the discussion in

the earlier section 3.1 and from (3.4) we know that, there is always the point

τ∗′ =
Q′ · w
P ′ · w =

dτ∗ − b

−cτ∗ + a
, (3.34)

at which the line in (3.9) and the circle in (3.33) meet. Here we have just rewritten the

point in (3.4) in the τ ′ co-ordinates. To find the other point we first substitute

τ ′
1 =

Re(Q̃ · wP̃ · w̄)

Im(Q̃ · wP̃ · w̄)
τ ′
2, (3.35)

which arises from the (3.9) into (3.33) to obtain a quadratic equation for the points of

intersection. This equation is given by
(

|Q̃ · wP̃ · w̄|2
(Im(Q̃ · wP̃ · w̄))2

)

{

a2Im(P ′
1 · wP · w̄) − acIm(P ′

1 · wQ · w̄ + Q′
1 · wP · w̄)

+c2Im(Q′
1 · wQ · w̄)

}

τ ′2
2 (3.36)

+

{

Re(Q̃ · wP̃ · w̄)

Im(Q̃ · wP̃ · w̄)

[

2abIm(P ′
1 · wP · w̄) − (ad + bc)Im(P ′

1 · wQ · w̄ + Q′
1 · wP · w̄)

+2cdIm(Q′
1 · wQ · w̄)

]

− Re(P ′
1 · wQ · w̄ − Q′

1 · wP · w̄)
}

τ ′
2

+
{

b2Im(P ′
1 · wP · w̄) − bdIm(P ′

1 · wQ · w̄ + Q′
1 · wP · w̄) + d2Im(Q′

1 · wQ · w̄)
}

= 0.

From the above equation, one can easily read out the product of the two roots, which is

given by

b2Im(P ′
1 · wP · w̄) − bdIm(P ′

1 · wQ · w̄ + Q′
1 · wP · w̄) + d2Im(Q′

1 · wQ · w̄)

a2Im(P ′
1 · wP · w̄) − acIm(P ′

1 · wQ · w̄ + Q′
1 · wP · w̄) + c2Im(Q′

1 · wQ · w̄)

×(Im(Q̃ · wP̃ · w̄))2

|Q̃ · wP̃ · w̄|2
. (3.37)

Therefore the second root of the quadratic equation is given by

τ̃ ′
2 =

b2Im(P ′
1 · wP · w̄) − bdIm(P ′

1 · wQ · w̄ + Q′
1 · wP · w̄) + d2Im(Q′

1 · wQ · w̄)

a2Im(P ′
1 · wP · w̄) − acIm(P ′

1 · wQ · w̄ + Q′
1 · wP · w̄) + c2Im(Q′

1 · wQ · w̄)

× Im(Q̃ · wP̃ · w̄)

|Q̃ · w|2
. (3.38)
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To obtain the second root we have divided the product of the roots by the imaginary part

of τ∗′
2 . Then using the equation of the line (3.35) we can find the real part of the the second

point of intersection. This is given by

τ̃ ′
1 =

b2Im(P ′
1 · wP · w̄) − bdIm(P ′

1 · wQ · w̄ + Q′
1 · wP · w̄) + d2Im(Q′

1 · wQ · w̄)

a2Im(P ′
1 · wP · w̄) − acIm(P ′

1 · wQ · w̄ + Q′
1 · wP · w̄) + c2Im(Q′

1 · wQ · w̄)

×Re(Q̃ · wP̃ · w̄)

|Q̃ · w|2
. (3.39)

In general the second point of intersection between a small black hole decay and a generic

decay can be in the interior of the upper half plane if τ̃ ′
2 > 0.

3.6 Walls which never intersect in the interior of the moduli space

In the following we will find the necessary and sufficient conditions such that this second

point τ̃ ′ never lies in the interior of the upper half plane given any small black hole decay

specified by a, b, c, d,∈ ZZ with ad−bc = 1. From (3.38) and the fact that Im(Q′·wP ′ ·w̄) < 0

for all w, we see that the only way τ̃ ′
2 ≤ 0, is to demand

R =

(

b2Im(P ′
1 · wP · w̄) − bdIm(P ′

1 · wQ · w̄ + Q′
1 · wP · w̄) + d2Im(Q′

1 · wQ · w̄)
)

(a2Im(P ′
1 · wP · w̄) − acIm(P ′

1 · wQ · w̄ + Q′
1 · wP · w̄) + c2Im(Q′

1 · wQ · w̄))
,

≥ 0, (3.40)

for all a, b, c, d which satisfies ad − bc = 1. We will now show that there are two possible

ways to ensure this.

Observe that numerator and the denominator that occurs in the ratio R can be writ-

ten as

R =
vT
2 Nv2

vT
1 Nv1

, (3.41)

where

v2 =

(

b

d

)

, v1 =

(

a

c

)

N =

(

A −B
2

−B
2

D

)

. (3.42)

Now it is clear that if the product of eigen values of the matrix N turns of to be positive

then the ratio R > 0 for all a, b, c, d. For this to be true we must have the Det(N) > 0.

This results in

[

Im(P ′
1wP · w̄)Im(Q′

1 · wQ · w̄)
]2 − 1

4
[Im(P ′

1 · wQ · w̄ + Q′
1 · wP · w̄)]2 > 0. (3.43)

From our discussion in the section 3.3 and from (3.17) we see that the above condition

ensures that the wall of marginal stability for the generic decay in (3.14) never intersects

the real axis. Further more since it always passes through the point (3.4) in the lower

half τ -plane, it lies entirely in the lower half plane. We exclude this situation as the

equation (3.14) does not represent a physical wall of marginal stability.

Now if Det(N) < 0, one can factorize the quadratic form

Ax2 − Bxy + Dy2, (3.44)
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where A,B,D are defined in (3.16). We first examine the situation when A = Im(P ′
1 ·wP ·

w̄) 6= 0, we then can write the above quadratic form as

A(x − r+y)(x − r−y), where r± =
B ±

√
B2 − 4AD

A
. (3.45)

Note that these roots are real as we have Det(N) < 0 and these are the points the the

circle (3.14) intersects the real axis. The ratio R for this situation can be written as

R =
(b − r+d)(b − r−d)

(a − r+c)(a − r−c)
, (3.46)

We need this ratio R ≥ 0 for all a, b, c, d with ad − bc = 1. We first show that this can be

maintained for all a, b, c, d such that ad−bc = 1 if r+ and r− are rational with the condition

r+ =
p

q
, r− =

p′

q′
, and pq′ − p′q = 1. (3.47)

Here we have chosen r+ > r− for definiteness. One can interchange the assignment if

r− > r+. Consider the product of the matrices

(

q′ −p′

−q p

)(

a b

c d

)

=

[

(aq′ − p′c) (bq′ − p′d)

(−aq + pc) (−bq + pd)

]

. (3.48)

Note that since pq′ − p′q = 1, the first matrix in the above equation is a SL(2, ZZ) matrix.

Since the product of two SL(2, ZZ) matrices is also a SL(2, ZZ) matrix we see that

(aq′ − p′c)(−bq + pd) − (bq′ − p′d)(−aq + pc) = 1. (3.49)

Each of the terms in the above equation is an integer, we have the sign of (aq′−p′c)(−bq+pd)

and (bq′ − p′d)(−aq + pc) is the same or either one of the terms is zero. This implies that

the ratio

R =
(−bq + pd)(bq′ − p′d)

(−aq + pc)(aq′ − p′c)
, (3.50)

=
(b − p

qd)(b − p′

q′ d)

(a − p
q c)(a − p′

q′ c)
,

=
(b − r+d)(b − r−d)

(a − r+c)(a − r−c)
,

≥ 0,

for all {a, b, c, d} ∈ ZZ with ad− bc ∈ ZZ. From the previous section 3.4, we see that if these

decays have to be physical then the coefficients of (3.14) and (3.15) also must satisfy Case

(i) of table 1. Note that this basically imposes and inequality on the coefficients A′B′,D.

Since these are conditions on independent coefficients A′, B′,D′, we can always work in the

domain of w such that the inequality in (3.22) is satisfied. Note that r+ and r− are the

points at which the circle (3.14) intersects the real axis in the original τ plane and they

agree with the points that the wall corresponding to some small black hole decay intersects
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the real axis given in (3.12). Therefore according to our discussion in section 3.3 the decays

which satisfy (3.47) must coincide with the walls corresponding to some small black hole

decay. It is important to mention that though the walls of such decays are the same as

that of the small black hole decay, the actual decay can be different, since the values r+

and r− do not characterize the decay uniquely but only the corresponding wall.

The case when Det(N) = 0 is not of sufficient interest because, in such a situation

r+ = r− and the wall of marginal stability for the generic decay (3.14) intersects the real

line only once from below. It does not emerge in the upper half τ plane and therefore not

a physical wall. The only remnant of this wall in the physical τ plane is a point on the

real axis.

We finally examine the situation when A = Im(P ′
1 · wP · w̄) = 0. From table 1 we see

that this occurs for P ′
1 = αP with 0 < α < 1 or for P ′

1 = 0. This situation is best studied

in the original coordinate τ . In the τ plane. The equation corresponding to the wall of

marginal stability (3.14) reduces to a line. It intersects the wall corresponding to the small

black hole decays at (3.4) in the lower half τ plane. It also intersects the real line at

τ1 =
D

B
=

Im(Q′
1 · wQ · w̄)

Im(P ′
1 · wQ · w̄ + Q′

1 · wP · w̄)
. (3.51)

From the structure of the small black hole decays given in figure 1. it is clear that unless

this point in the above equation is an integer, it will intersect one the circles corresponding

to the small black hole decay, in particular the small black hole decay corresponding to

the bounding circles which join points (n, 0) and (n + 1, 0) on the real line. Therefore we

need D
B = n to be an integer to ensure it does not intersect the bounding small black hole

decays. When this occurs, a little thought shows that this decay is identical to a small

black hole decay characterized by the matrix
(

1 n

0 1

)

. (3.52)

This is because the line corresponding to the above small black hole decay and the decay

with D
B = n intersect at the common point (3.4) and on the real axis at n. Therefore, both

of them must be coincident. To summarize we have shown that for A 6= 0, a generic decay

does not intersect the wall corresponding to the small black hole decay if (3.47) is satisfied.

For A = 0 one the line corresponding to the generic decay must pass through an integer

on the real axis.

We now show that the class of decays which satisfy (3.47) are the only physical decays

for which the second point of intersection with the small black hole decays is such that

τ̃2 ≤ 0. That is we prove that the condition in (3.47) is not only necessary but also

sufficient. Note that the decays we discussed when A = 0 whose walls of marginal stability

reduce to straight lines also satisfy the condition (3.47) as one can see from (3.52) Our

strategy to prove this will be by elimination. We will show that all the remaining cases

are such that one can choose a, b, c, d such that R < 0 or equivalently find a small black

hole decay which intersects with the generic decay in the interior of the upper half plane.

Without loss of generality we will assume that p
q > p′

q′ and q, q′ > 0 with p, q relatively

prime, and p′, q′ relatively prime.
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Case(i) r+ = p

q
, r− = p

′

q′
with pq′ − p′q = n. This case also breaks up into two. Let

us first consider the case of n > qq′ then r+ − r− > 1 and there always exists an integer

in between r+ and r−. From the structure of domains formed by small black hole decays,

it can be seen that there is a small black hole decay whose wall is a straight line passing

through every integer on the real axis. This line certainly will intersect the circle joining

r+ and r−. Now consider the case for which n < qq′, then by the main theorem of the

linear Diophantine equation discussed in the appendix (A.15), we can find a, b, c, d ∈ ZZ

with ad − bc = 1 and d, c > 0 such that

b

d
<

p

q
<

a

c
, with d < q, c < q, (3.53)

pd − bq = 1, and aq − pc = 1, ad − bc = 1.

Now consider the points

t− =
b + mp

d + mq
<

p

q
< t+ =

a − mp

c − mq
, (3.54)

where m is a positive integer. Note that there is a small black hole decay passing through

the points t− and t+ since (a−mp)(d+mq)− (b+mp)(c−mq) = 1. The distance between

t− and r− is given by

t− − r− =
n(d + mq) − q′

qq′(d + mq)
. (3.55)

To obtain this we have used the equations in (3.53). By suitably choosing m large enough,

it is clear that we can ensure

r− < t− < r+ < r+. (3.56)

Now that there is a circle corresponding to small black hole decay joining t− and t+, it is

clear from the discussion in (3.19) that the circle joining r− and r+ intersects the former

in the interior of the τ plane. We have therefore seen that if r+, r− are rational such that

pq′ − p′q = n with n > 1, there is always a small black hole decay intersecting the wall

passing through r+ and r− in the interior of the moduli space.

Case(ii) r+ is irrational. Let us suppose r+ is irrational. Then by the corollary to

the Dirichlet’s approximation theorem (A.2) we can find infinite rationals p
q with p and q

relatively prime and q > 0 such that
∣

∣

∣

∣

r+ − p

q

∣

∣

∣

∣

<
1

q2
. (3.57)

Now using the main theorem on the linear Diophantine equation we know that there exists

integers a, b, c, d with ad−bc = 1 satisfying (3.53). There is a wall corresponding to a small

black hole decay passing through s− = b
d and s+ = a

c . Let us consider first the case that
p
q > r+. Then

r+ − b

d
= −

(

p

q
− r+

)

+

(

p

q
− b

d

)

, (3.58)

> − 1

q2
+

1

qd
=

q − d

qd
.
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Where we have used the inequality (3.57). Now since we have q > d, we can conclude that

r− < s− < r+ <
p

q
< s+. (3.59)

From (3.19) we have, the circle corresponding to the small black hole decay joining s− and

s+ intersects the circle joining r− and r+. If p
q < r+, then

a

c
− r+ =

(

a

c
− p

q

)

+

(

p

q
− r+

)

, (3.60)

>
q − c

cq
.

where we have used the inequality (3.57). Since q > c we conclude that

r− < s− <
p

q
< r+ <

a

c
. (3.61)

Again we have the situation that the circle corresponding to the small black hole decay join-

ing s− and s+ intersects the circle joining r− and r+. Thus if r+ is irrational then the wall

of marginal stability which passes through r− and r+ intersects some wall corresponding

to a small black hole decay in the interior of the moduli space.

Case(iii)r− is irrational. For this case, the argument to show that there exists a wall

corrresponding to a small black hole decay which intersects the wall of marginal stability

joining r− and r+ is same as for the Case(ii) discussed earlier.

Case(iv) r+ and r− are irrational. It is clear one can again use the argument for

either Case(ii) or Case(iii) to show that there exists a wall corrresponding to a small black

hole decay which intersects the wall of marginal stability joining r− and r+.

We now have exhausted all the possibilities for the values of r+ and r− and have

shown that except for the situation when r− and r+ are rational and pq′ − p′q = 1 there

is always a small black hole decay which intersects the circle joining r− and r+ in the

interior of the upper half plane. Thus the necessary and sufficient condition that the walls

of marginal stability never intersect in the interior of the upper half τ plane is when the

walls satisfy (3.47)

For completeness let us now find the point τ̃2 for the class of decays which satisfy (3.47).

We have shown that the second point of intersection of this class of black holes and the

class of small black holes

(

a b

c d

)

is determined by (3.38). Since R ≥ 0, the only physically

relevant point is when R vanishes or R is ∞. From the expression of R given in (3.40) we

see that R can vanish at

p

q
=

b

d
or

p′

q′
=

b

d
(3.62)

In, this case, τ̃ ′
2 = 0, τ̃ ′

1 = 0 and the intersection point in the original variables is at τ̃ = b
d .

R can also be infinity when
p

q
=

a

c
or

p′

q′
=

b

d
. (3.63)
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In this case τ̃ ′ is at i∞, while in the original τ variable, the intersection point is at τ = a
c .

Thus we can conclude the wall of marginal stability of a small black hole decay intersects

with the those which satisfy the condition (3.47) only if the following sets have an overlap

{

a

c
,
b

d

}

,

{

p

q
,
p′

q′

}

. (3.64)

Note that this is the same conditions obtained by [9] for the case of small black hole

decays in N = 4 theories. This is to be expected since we have seen that the walls which

satisfy (3.47) are coincident with small black hole decays.

3.7 Walls bounded by walls of small black hole decays

Using our earlier results, it is now easy to find the conditions on the walls so that they are

all confined in domain II for figure 1. That is the walls are such that they are bounded by

the bounding walls corresponding to small black hole decays. Consider the class of decays

with points of intersection on the real axis r+ and r− such that they are in the interval

[n, n + 1] where n ∈ ZZ. That is r+ and r− are such that

n ≤ r+ ≤ n + 1, and n ≤ r− ≤ n + 1 (3.65)

Then from the structure of the domains of the small black hole decay shown in figure 1.

, we see that such decays never intersect the small black hole decay which passes through

the points n and n + 1 in the interior of the upper half plane. This is because they don’t

satisfy the condition (3.19) required for intersection in the interior of moduli space. Thus

they are lie below this small black hole decay and are therefore they are confined to domain

II. Note that if r+ = n + 1, r− = n, then the decay we are considering coincides with the

small black hole decay. Thus all decays which satisfy (3.65) are bounded by small black

hole decays joining the points (n, 0) and (n+1, 0) Therefore if one restricts the moduli and

the charges of decay so that they satisfy (3.65) then the region II in figure 1. is entirely

free from any decay in this class.

4 Entropy enigma decays

We have seen that in these class of N = 2 models the moduli can easily be parametrized in

terms of the complex coordinates τ and w. The the BPS mass formula is simple expression

in terms of charges and these moduli. Furthermore all walls of marginal stability are

circles or lines in the τ plane. Therefore it is interesting to re-examine the phenomenon

of ‘Entropy Enigma’ found in [4, 25, 26] and see how they occur in the τ plane. Briefly

the Entropy enigma decays are BPS decays which occur when the entropy of the products

is parametrically larger than the entropy of the parent. We will now enumerate all the

possible charge configurations of the decay products which can lead to this situation for
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the class of N = 2 models discussed in this paper. Consider the decay
(

ΛQ

ΛP

)

=

(

Q1

P1

)

+

(

Q1

P2

)

, (4.1)

=

(

Λ
2
Q + Λ2q

Λ
2
P + Λ2p

)

+

(

Λ
2
Q − Λ2q

Λ
2
P − Λ2p

)

.

Since the initial dyon is supersymmetric and a large black hole we have the following

Q2 > 0, P 2 > 0, Q2P 2 > (Q · P )2, S = Λ2π
√

Q2P 2 − (Q · P )2, (4.2)

where S is the Hawking-Bekenstein entropy of the black hole. To ensure that the decay

products are supersymmetric and are large black holes in the limit Λ → ∞ we have to

impose the following conditions

Q2
i > 0, P 2

i > 0, Q2
i P

2
i − (Qi · Pi)

2 > 0

with i = 1, 2, in the large Λ limit. This leads to the following 3 cases which exhibit the

entropy enigma.

1.

q2 > 0, p2 > 0, q2p2 − (q · p)2 (4.3)

S2 = 2πΛ4
√

q2p2 − (q · p)2.

Here S2 refers to the sum of the leading entropy of the products in the Λ → ∞
limit. Note that q2 > 0, p2 > 0 is obtained if one demands Q2

i > 0, P 2
i > 0 in the

Λ → ∞ limit.

2.

q2 > 0, p2 = 0, p · P = 0 q · p = 0, q2P 2 − (Q · p + q · P )2 > 0 (4.4)

S2 = Λ2π
√

q2P 2 − (Q · p + q · P )2

Note that for this case, p2 = 0 implies that p · P = 0 on demanding P 2
1 > 0 and

P 2
2 > 0 in the Λ → ∞ limit. Furthermore, demanding that that the decay products

are large black holes (i.e Q2
i P

2
i − (Qi · Pi)

2 > 0 ) in the Λ → ∞ limit forces q · p = 0

and q2P 2 − (Q · p + q · P )2 > 0.

3.

p2 > 0, q2 = 0, q · Q = 0, p · q = 0, p2Q2 − (Q · p + q · P )2 (4.5)

S2 = πΛ3
√

p2Q2 − (Q · p + q · P )2

This is a similar situation to that of case 2. Here q2 = 0 implies that q · Q = 0 on

demanding Q2
1 > 0 and P 2

2 > 0 in the Λ → ∞ limit. Demanding that the decay

products are large black holes in the Λ → ∞ limit gives rise to the condition q · p = 0

and p2Q2 − (Q · p + q · P )2 > 0.
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Finally when one imposes the last possible condition q2 = 0, p2 = 0, then one is forced to

set q · Q = 0, q · P = 0, q · p = 0, ·P to ensure that all decay products are supersymmetric

and are large black holes. Then the leading entropy of the decay products is given by

πλ2/2
√

Q2P 2 − (Q · P )2 which is not parametrically larger than the parent black hole.

We now examine the wall of marginal stability for these decays and show that if the

moduli w is generic, that is all the following moduli dependent quantities do not scale

with Λ

Q · w,P · w, q · w, p · w ∼ O(Λ0), (4.6)

then entropy enigma decays are not possible. This phenomenon was observed in the specific

examples studied in [4, 26] but was not shown in general.12 The wall of marginal stability

for the decay is determined by the equation (3.14) and inequality (3.15). On substitution

of the charges of the decay products in (4.1) in these equations we obtain the following

τ τ̄ Im[p·wP · w̄] − τ1Im[(p · w)(Q · w̄) + (q · wP · w̄)] (4.7)

−τ2Re[(p · w)(Q · w̄) − (q · wP )(·w̄)] + Im[(q · w)(Q · w̄)] = 0,

and
1

4
|Q · w − τP · w|2 − Λ2|q · w − τp · w|2 > 0. (4.8)

As we have seen earlier, the first equation and the equation equation determining the

inequality are circles. From (2.30) we see that the two circles intersect at points where the

central charges of the decay products vanish. These points are

τ+ =
(Q + 2Λq) · w
(P + 2Λp) · w, τ− =

(Q − 2Λq) · w
(P − 2Λp) · w. (4.9)

Note that since both these points correspond to points at which the central charges of

either of the decay products vanish, these points must lie in the lower half τ plane.

We now analyze the various cases and show that entropy enigma decays at generic

values of the w moduli there are no lines or marginal stability corresponding to the entropy

enigma in the limit Λ → ∞.

Generic values of w-moduli: Im(p ·wP ·w̄) 6= 0. In the Λ → ∞ limit, and at generic

values of the w moduli, more specifically when the moduli is such that (4.6) is satisfied, we

see that the points of intersection of the circles coincide (4.9) coincide to O(Λ−1) terms.

τ±|Λ→∞ =
q · w
p · w

[

1 ± 1

2Λ

(

Q · w
q · w ∓ P · w

p · w

)

+ O

(

1

Λ2

)]

. (4.10)

Therefore to the leading approximation in Λ, the two circles (4.7) and (4.8) are tangents to

each other. Now we need to see if the points on the circle (4.7) satisfy the inequality (4.8)

in the large Λ limit. If at all this wall is physical, it must emerge in the upper half plane

and therefore must satisfy the condition in (3.17). Let us suppose it does, then at these

points |q · w − τ · w| is of O(Λ0) and non-zero. The only point it vanishes is at (4.10)

12See below equation (8) of [26]
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which is in the lower half τplane. If |q · w − τ · w| is of O(Λ0) then the second term

in (4.8) is the dominant term in the Λ → ∞ limit and it is clear that it never satisfies

the inequality (4.8). Therefore (4.7) can never be a physical wall of marginal stability for

generic values of moduli which satisfy (4.6) in the Λ → ∞ limit.

Generic values of w-moduli: Im(p·wP ·w̄) = 0. In general the condition Im(p·wP ·w̄) =

0 imposes an additional condition on the moduli space, and therefore the corresponding

wall of marginal stability will not be a co-dimension one surface in the moduli space.

Therefore the only way Im(p · wP · w̄) can vanish is p = αP,α 6= 0. Then the circle (4.7)

reduces to the straight line given by

− τ1Im[n(P · wQ · w̄) + (q · wP · w̄)] − τ2Re[n(P · wQ · w̄) − (q · wP )(·w̄)] (4.11)

+Im[q · wQ · w̄] = 0,

while the inequality in (4.8) reduces to

1

4
|Q · w − τP · w|2 − Λ2|q · w − nτP · w|2 > 0. (4.12)

Again the line in (4.11) and the circle determining the inequality in (4.12) intersect each

other at the point where the central charges vanish. This is given by

τ± =
(Q ± 2Λq) · w
P · w(1 ± 2αΛ)

, (4.13)

=
q · w

αP · w + O

(

1

Λ

)

.

These points must lie in the lower half τ plane even in the Λ → ∞ limit.13 For generic

values of the moduli w, that is when (4.6) is satisfied, the part of the line (4.11) which

emerges in the upper half plane is such that |q · w − nτP · w| ∼ O(Λ0). This is because

this terms vanishes only at τ± in the Λ → ∞ limit and these point lie in the lower half τ

plane. This implies the second term in (4.12) is always dominant in the putative wall of

marginal stability (4.11) which emerges in the upper half plane. Thus the inequality (4.12)

can never be satisfied and (4.11) does not represent a physical wall of marginal stability at

generic values of moduli w.

5 Conclusions

We have studied various properties of walls of marginal stability in N = 2 models with

the moduli space given by (1.1). To study these properties we have used the mass formula

for BPS states obtained from the classical moduli space of these theories. The list of the

properties we have found are listed in the introduction. Using these properties we have

isolated a class of decays with walls which always lie in the region bounded by small black

13Note that τ± = (Q ± 2Λq) · w/P · w for α = 0. Thus in Λ → ∞ limit it is impossible to ensure that

both these points lie in the lower half τ plane for generic values of w. Therefore for generic values of w such

decays are not BPS
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hole decays. These walls always lie in region II of figure 1. We hope these properties will be

useful in constructing and also testing possible proposals for BPS spectrum in these models.

We showed that these models do not admit entropy enigma decays for generic values

of moduli which satisfy (4.6). It will be interesting to find explicit examples of entropy

enigma decays by appropriate scaling of the w moduli by the parameter Λ. Such examples

can complement the examples found in [4, 26].
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A Some number theory

In this appendix we recall some theorems from number theory which are used in this paper

A.1 Dirichlet’s approximation theorem

For each α belonging to the real and N a positive integer, there are n ∈ ZZ, (n ≤ N) and

p ∈ ZZ such that
∣

∣

∣
α − p

n

∣

∣

∣
<

1

Nn
, i.e. |nα − p| <

1

N
(A.1)

Corollary to Dirichlet’s approximation theorem. If α is irrational, then there are

infinitely many rationals (with strictly increasing denominators) p
n , n > 0 with p and n

relatively prime such that
∣

∣

∣
α − p

n

∣

∣

∣
<

1

n2
(A.2)

The number p
n is called the D-approximation to α. In fact as an another corollary one

can also show that if α is rational, it has only a finite number of D-approximations. For

proof of the Dirichlet approximation theorem and its corollaries see [33], see also [34] for a

short review.

A.2 Main theorem on the linear Diophantine equation

For each each rational of the form p
q q > 0 and p, q relatively prime, there are a, c such

that aq − cp = 1.

We reproduce the proof of this theorem from [34] with a small modification necessary

for our purpose. Let α = p
q . If q = 1, there a − cp is solved by setting c = 0 and a = 1.

Therefore without loss of generality we may assume that q ≥ 2. Applying the Dirichlet

approximation theorem, with N = q − 1, there are c ∈ ZZ and c > 0, c ≤ N = q − 1 and

a ∈ ZZ such that

|αc − a| =

∣

∣

∣

∣

p

q
c − a

∣

∣

∣

∣

<
1

N
=

1

q − 1
, (A.3)
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multiplying it by q leads to

|pc − aq| <
q

q − 1
= 1 +

1

q − 1
≤ 2. (A.4)

Since pc − aq ∈ ZZ, this implies that pc − aq| ≤ 1. The case pc − aq = 0 is excluded.

Because, this implies that

α =
p

q
=

a

c
. (A.5)

and c ≤ N = q− 1 ≤ q. This contradicts the assumption that p and q are relatively prime.

Thus the only possibility is aq − pc = ±1. Let us consider the case

aq − pc = 1, (A.6)

then we already have the proof of the theorem. In addition to this let us define the integers

b = p − a, d = q − c. (A.7)

Note that q > d > 0 since q > c > 0. Then from (A.6) we see that

bq − pd = 1, ad − bc = 1. (A.8)

We therefore have shown the existence of the ratios b
d and a

c in the following order

b

d
<

p

q
<

a

c
(A.9)

which satisfies (A.6) and (A.8). Let us now consider the case

pc − aq = 1. (A.10)

Then we again define the integers

b = p − a, d = q − c, (A.11)

again d > 0 since c < q. From (A.12) we see that

bq − pd = 1. (A.12)

Thus now we see that the integer b plays the role of a and d plays the role of c required by

the theorem. In addition we also have

bc − ad = 1. (A.13)

which follows from (A.10). Thus in this case we have the ratios in the following increas-

ing order
a

c
<

p

q
<

b

d
, (A.14)

satisfying (A.10), (A.12), (A.13)

We have proved the theorem and also shown that given the ratio p
q , q > 0 and p, q

relatively prime, there exists two ratios one lesser and one greater than p
q say b

d and a
c

respectively with q > d > 0, q > c > 0 such that

ad − bc = 1, pd − bq = 1, aq − pc = 1. (A.15)
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